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Abstract. T -violating P -even magnetism is considered. The magnetism arises from the T -violating P -
conserving vertex of a spin 1/2 particle interaction with the electromagnetic field. The vertex vanishes
for a particle on the mass shell. Considering the particle interaction with a point electric charge we have
obtained the T -violating P -even spin dependent potential, which is inversely proportional to the cubed
distance from the charge. The matrix element of this potential is zero for particle states on the mass shell;
nevertheless, the potential contributes to the T -odd P -even neutron forward elastic scattering amplitude
by a deformed nucleus with spin S > 1/2. The contribution arises if we take into account incident neutron
plane wave distortion by the strong neutron interaction with the nucleus.

1 Introduction

In connection with the direct observation of time-reversal
symmetry violation in the K0–K̄0 meson system [1] it
would be interesting to detect T -violation in other nuclear
or atomic systems. However, the Standard Model pre-
dicts very small T -violating effects in nuclear and atomic
physics, so we are forced to search for new interactions.
It is necessary to distinguish a P - and T -odd interaction
from a P -even T -odd one. While there are rather rigid
restrictions on the strength constants of the first type in-
teractions, obtained from dipole moment measurements
of atoms and particles, restrictions on the constants of P -
even T -odd interactions are not so strong. As is known the
null test for the latter kind of interaction is the observation
of a ∼ (σ×k·S)(k·S) five-fold correlation term in the for-
ward elastic scattering amplitude of a spin 1/2 particle by
a particle with a spin S ≥ 1 [2–5], where k is the incident
particle momentum, σ is the Pauli matrix of the incident
particle and S is the nucleus spin operator. The relevant
experiments have been carried out [6,7] for a 165Ho target
and now are planned to be performed on the supercon-
ducting synchrotron COSY [8] with deuterons. Usually the
P -conserving breakdown of the time reversal symmetry is
considered on the basis of the ρ and A1 meson Lagrangian
[9]. In this paper we consider another phenomenological
possibility, namely, T -violating P -conserving magnetism
and its contribution to the aforementioned five-fold corre-
lation.

Fig. 1. T -odd P -even vertex of the particle interaction with
the electromagnetic field

2 Long-range T -non-invariant P -even
electromagnetic interaction

The magnetism can be introduced by the T -violating P -
conserving vertex function of a spin 1/2 particle interact-
ing with the electromagnetic field [10,11]:

Γ η
T = µT

i
2m3 (Pq)σ

ηνqν , (1)

where P = k′ + k, q = k′ − k (Fig. 1), m is the particle
mass and σην = (γηγν − γνγη)/2. Let us consider T -odd
scattering of a particle by a point electric charge Ze.

After the application of ordinary diagram techniques
[12] we obtain the appropriate matrix element correspond-
ing to the diagram in Fig. 1:

M = −µT
ie

2m3 (Pq)ū(k
′)σ0νqνu(k)A(e)

0 , (2)

where A(e)
0 (q) = 4πZe/q2 is the Fourier transform of the

Coulomb potential of the electric charge and u(k) is the
particle bispinor. Setting q = (0, q) and substituting
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u(k) =

( √
ε+mφ

(ε+m)−1/2(σk)φ

)

(φ is the spin wave function of a particle and ε is the
particle energy including its rest mass) into (2) we find
the T -odd P -even scattering amplitude of a particle by a
point electric charge for small transferred momentum q:

f(q) =
M
4π

= −µT
2Ze2

m3

(kq)(σ × k · q)
q2 . (3)

While evaluating the scattering amplitude we consider a
particle to be on the mass shell (k2 = (k+q)2 = ε2 −m2)
everywhere except for the term (kq). If the particle is
completely on the mass shell, (kq) = 0, and the ampli-
tude (3) vanishes. The dependence of the amplitude on
the transferred momentum q looks like that for the mag-
netic dipole scattering amplitude. So it turns out that the
interaction is long range. In [11] the conclusion (repeated
in the monograph of [13]) has been drawn of the non-
existence of a long-range T -odd P -even potential (i.e. it is
decreasing as 1/r3 or weaker with distance [14]). However,
we will see that this conclusion does not concern off-mass-
shell potentials.

We can consider the particle scattering in the frame-
work of the Schroedinger equation with relativistic mass1
[12]:

(∇2 + k2)Ψ(r) = 2εV (r)Ψ(r), (4)

which allows us below to take into account incident par-
ticle wave distortion by the strong nucleus interaction. In
the first Born approximation, the amplitude (3) can be
obtained from the T -odd energy dependent interaction

VT (r) = −µT
3Ze2

2εm3

(
(p̂r)

1
r5

(r · σ × p̂)

+ (σ × p̂ · r)
1
r5

(rp̂)
)
. (5)

It can be represented by

VT (r) = µT
e

2εm3 (p̂ · {∇ ⊗ E(r)} · (σ × p̂)

+ (σ × p̂) · {∇ ⊗ E(r)} · p̂), (6)

where E(r) = −∇Φ(r) = Ze(r/r3) is the strength of the
electric field created by a charge at the point r, the gra-
dient acts on the E(r) only, p̂ is the particle momentum
operator, and ⊗ denotes a direct vector product. When
considering a particle moving along a classical trajectory,
we should replace the momentum operator by its classical
value. In the first order in the interaction the trajectories
of a classical particle deflect from a straight line only in
the vicinity of a scatterer (Fig. 2). In the presence of some
ordinary on-mass-shell interaction, for instance the strong

1 It is far easier to deduce (4) from the Klein–Gordon equa-
tion:

{
(i(∂/∂t) − V )2 +∆−m2}ψ(r, t) = 0. Substituting

ψ(r, t) = e−iεtψ(r) we find {(
ε2 −m2) +∆} = {2εV − V 2}ψ.

So we can rely on (4) for correctly taking into account the
spin-less part of the strong interaction with accuracy V/ε

Fig. 2. Schematic picture of classical particle trajectories
(in the first order in interaction) calculated with the classi-
cal Hamiltonian obtained from the off-mass-shell interaction
through replacing the particle momentum operator by its clas-
sical value

one, the off-mass-shell T -odd interaction decreases or in-
creases the stream of particles in the area of the strong
interaction and, thereby, gives a T -odd contribution to
the scattering amplitude.

So we can see that a moving particle can interact with
a non-uniform electric field by means of the time reversal
violating parity conserving interaction.

3 T -odd scattering of a neutron
by a deformed nucleus with spin S ≥ 1

Let us consider T -odd neutron scattering by a deformed
nucleus. Let us assume that the interaction of a neutron
with a nucleus is the sum of the T -odd interaction dis-
cussed above, and the strong one. For evaluating the neu-
tron–nucleus elastic scattering amplitude we will use the
Schroedinger equation (4). The scattering amplitude at
zero angle in the third Born approximation is written as

F (k,k)

= − ε

2π

{
U(k,k) + 2ε

∫
U(k,k′)U(k′,k)
k2 − k′2 + i0

d3k′

(2π)3

+(2ε)2
∫

U(k,k′)U(k′,k′′)U(k′′,k)
(k2 − k′2 + i0)(k2 − k′′2 + i0)

d3k′

(2π)3
d3k′′

(2π)3

+ · · ·
}
, (7)

where U(k′,k) =
∫
e−ik′rV (r)eikrd3r represents the

Fourier transform of the neutron–nucleus potential. U(k′,
k) is the sum of the strong interaction part (for simplic-
ity we consider it not to be depending on the spin) and a
T -odd one:

U(k′,k) = us(k′ − k) + (σ · (k′ + k) × (k′ − k))((k′ + k)
· (k′ − k))uT (k′ − k). (8)
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For the nucleus with the center of symmetry us(k) =
us(−k) and uT (k) = uT (−k). Substituting (8) in (7) we
find that the first and second Born terms give zero contri-
butions. As a result, we have

FT (k,k)

= −2ε3

π

∫ {
2(σ × (k′ + k) · (k − k′))

1
k2 − k′′2

×uT (k − k′)us(k′−k′′)us(k′′ − k) + (σ × (k′ + k′′)

·(k′ − k′′))
((k′′ + k′)(k′ − k′′))
(k2 − k′2)(k2 − k′′2)

us(k − k′)

×uT (k′ − k′′)us(k′′ − k)

}
d3k′

(2π)3
d3k′′

(2π)3
. (9)

In the first term of (9) we change variables k′ = k +
q, k′′ = k + Q, and in the second term k′ = k + Q −
q, k′′ = k + Q and we get

FT (k,k)

= −2ε3

π

∫ {
− 2(σ × k · q)

(
1

k2 − (k + Q)2

+
1

k2 − (k + Q − q)2

)
+ 2(σ × Q · q)

(
1

k2 − (k + Q)2

− 1
k2 − (k + Q − q)2

)}
uT (q)us(q − Q)us(Q)

× d3q

(2π)3
d3Q

(2π)3

= −8ε3

π

∫
(σ × Q · q)

1
k2 − (k + Q)2

×uT (q)us(q − Q)us(Q)
d3q

(2π)3
d3Q

(2π)3
. (10)

Deriving the last equality we have changed the variables
Q = Q′ − q′, q = −q′ in terms containing the factor
1/(k2 − (k + Q − q)2). Using the formula (6) we express
uT (k) through the Fourier transform of the charge dis-
tribution function inside the nucleus ρ(k) (nucleus charge
form factor):

uT (k) = µT
πZe2

εm3

ρ(k)
k2 . (11)

In the rough approximation, being suitable however for
our purposes, the strong interaction term can also be ex-
pressed through the Fourier transform of the nucleon dis-
tribution function in the nucleus and the nucleon–nucleon
scattering amplitude at zero angle f(0):

us(k) = −2πAf(0)
ε

ρ(k), (12)

where A is the atomic number of the nucleus. Thus, we as-
sume that the charge distribution coincides with the mat-
ter density. From (10) we obtain

FT (k,k)=−µT
8Ze2

m3 (2π)2A2f2(0)
∫

(σ × Q · q)
k2 − (k + Q)2 + i0

×ρ(q)ρ(q − Q)ρ(Q)
q2

d3q

(2π)3
d3Q

(2π)3
(13)

At high energies a simplification can be achieved by using
the propagator in the eikonal approximation:

1
k2 − (k + Q)2 + i0

≈ 1
−2kQ + i0

= −P 1
2kQ

− iπδ(2kQ). (14)

The contribution of the first term of (14) vanishes as can
be checked by changing of the variables Q = −Q′, q = −q′
in the expression (13). The deformed nucleus form factor
can be taken in the form

ρ(q) = e−βq2+β′(aq)2 . (15)

The unit vector a is parallel to the axis of symmetry of
the nucleus (z-axis) and describes the orientation of the
nucleus. The expression (15) corresponds to the charge
and matter distribution function:

℘(r) =
1

(2π)3

∫
eiqrρ(q)d3q (16)

=
1

8π3/2β
√
β − β′ exp

(
− r2

4β
− β′z2

4β(β − β′)

)
.

β′ characterizes the degree of deformation of the nucleus
and is connected with the quadruple moment:

Q = Z

∫
(3z2 − r2)℘(r)d3r = −4Zβ′. (17)

For a small nucleus deformation the nucleus root-mean-
square radius is expressed through β:

R2 =
∫
r2℘(r)d3r ≈ 6β. (18)

The calculation of the integral in the first order in β′ gives
the following expression:∫

Q × q
δ(kQ)
q2

exp(−βq2 + β′(aq)2 − β(q − Q)2

+β′(a · (q − Q))2 − βQ2 + β′(aQ)2)d3Qd3q

≈ (a × k)(a · k)
π5/2

2k3

β′

β2

×
∫ ∞

β

β − x

(2x+ β)2(β + x)3/2 dx. (19)

With the help of (19) we obtain the final formula:

FT (k,k) = i(σ · a × k)(a · k)µT (20)

×Ze2A2f2(0)
8
√
πm3k3

β′

β7/2

∫ ∞

1

(1 − x)dx
(2x+ 1)2(1 + x)3/2 .

The unit vector a is expressed through the only available
nucleus spin operator vector: a = (S/(S(S + 1))1/2). Set-
ting the T -violating moment (expressed in e/2m units)
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Fig. 3. T -violating P -even cross section σT =
σ0T (σ · S × (k/k)) (S · (k/k)) for a 165Ho target with
T -violating moment µT = 1

µT = 1 we find that the T -odd cross section is about
10−3 mbarn (Fig. 3) for a 165Ho (S = 7/2) target.

It is possible to obtain the formula for the limiting case
of low energies; however, the approximation (12) used for
the strong interaction becomes very rough. At low energies
the propagator can be approximated by

1
k2 − (k + Q)2 + i0

≈ − 1
Q2 +

2kQ

Q4 − 4(kQ)2

Q6 . (21)

The final formula at low energies looks like

FT (k,k) = (σ · a × k)(a · k)µT

×8Ze2A2f2(0)
15πm3

β′

β2

∫ ∞

1

(1 − x)dx
(x+ 1)3

√
2x+ 1

. (22)

The magnitude of the amplitude is proportional to the
squared neutron wave number k2 at low energies, whereas
at high energies it decreases in inverse proportion to the
wave number. At kR ∼ 1 both formulas give the same
but overestimated order of the amplitude magnitude. So
we restrict ourselves to ε − m = Elab > 50MeV (Fig. 3),
where kR > 7 and the eikonal approximation should be
valid.

4 Estimates for T -odd magnetism
for other systems

It is of interest to study the consequences of T -violating
P -conserving magnetism for other systems.

Electric dipole moment (EDM) of a neutron

The existing rigid experimental limit on the neutron EDM
(8×10−26e cm) allows one to obtain constraints on the T -
odd P -even interactions. Actually we have P -odd T -odd

Fig. 4a,b. Diagrams contributing to the neutron EDM. Black
circles denote T -odd P -even vertices, white circles denote P -
odd T -even vertices

= (P -even T -odd) × (P -odd T -even). So P -conserving
breakdown of the time reversal symmetry contributes to
the neutron EDM through interference with the P -odd
weak interaction.

The restriction ḡρ < 10−3 on the relative magnitude
of the T -odd P -even nucleon–ρ meson coupling has been
obtained [15] by calculating the Feynman graph in Fig. 4a.
The source of T -violation was the ρ meson–nucleon vertex
and the source of P -violation was the π meson–neutron
interaction.

We can consider the diagram in Fig. 4b, correspond-
ing to the T -odd magnetism contribution to the neutron
EDM. Both diagrams contain strong, electromagnetic and
weak interaction vertices. Hence they should give approx-
imately the same restriction on the relative strength of
the T -violation, but in the first case T -violation occurs
in the strong interaction, and in the second case it oc-
curs in the electromagnetic one. However, due to the off-
mass-shell character of the electromagnetic vertex an addi-
tional suppression factor (Pq/m2) ∼ (mπ/m)2 ≈ 2×10−2

arises [11]. Thus the constraint on µT is expected to be
µT ∼ 10−1.

Positronium-like system decays

Let us now consider the positronium system. The density
of electrons (positrons) in the positronium state with total
spin J = 1 can be presented in the form [5]

ρ(r) = A0(r) +A1J (σ− + σ+)
+A2(Jr)(σ− + σ+) · r

+ . . .+ T0(σ− × σ+ · J) + T1((σ−r)(σ+ × J · r)
−(σ+r)(σ− × J · r))
+T2((Jr)((σ− − σ+) × J · r)
+((σ− − σ+) × J · r)(Jr)), (23)

where r is the electron radius vector (the positron radius
vector is −r), An, Tn are functions of r, and σ−, σ+ are
the Pauli matrices of electron and positron, respectively.
The density is simultaneously the spin density matrix of
a positron and an electron. The positronium total spin
operator J is a parameter describing the positronium ori-
entation. To find the density for the concrete positronium
orientation we must take the matrix element from (23)
over a positronium spin state, i.e., replace J and J ⊗ J
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through the positronium polarization 〈J〉 and quadrupo-
larization 〈J ⊗ J〉, respectively. The result of C-, P -, and
T -transformations on the density can be described by the
operations

C : σ+ → σ−, σ− → σ+, r → −r,

T : J → −J , σ+ → −σ+, σ− → −σ−,
P : r → −r. (24)

We can see that the terms proportional to T0, T1, T2 are
T -odd, C-odd, P -even terms. But it is not possible to con-
struct T -odd P -even terms for the states with J = 0. From
this fact we may conclude that decays of positronium-like
systems with spin 1 should be used to search indirect T -
and C-violation.

The terms T0, . . . can originate from mixing of the
states with the same spatial parity but opposite charge
parity due to the P -even T -odd C-odd interaction

VT (r) = −µT
3e2

2εm3

(
(p̂r)

1
r5

(r · (σ− − σ+) × p̂)

+((σ− − σ+) × p̂ · r)
1
r5

(rp̂)
)
, (25)

where µT is the T -violating electron moment (the positron
has the same) and m is the electron mass. However, for
the ortho-positronium state 3S1 (JPC = 1−−) there is no
state with JPC = 1−+ which can be mixed to it. The
charge parity of positronium is given by C = (−1)l+s

and the spatial parity is given by P = (−1)l+1. So T -
and C-violation occurs only in the direct decay not under
consideration here. For the state 1P1 (JPC = 1+−) there
exists a state 3P1 (JPC = 1++) which can be mixed to
it. The impurity can be estimated as ηT ∼ VT /∆E, where
VT is the typical value of a T -odd interaction and ∆E is
the splitting between these levels. The splitting ∆E can
be produced by tensor and spin–orbital interactions [12]

Vs =
3α
4m2

1
r3

(
(r × p · (σ− + σ+))

+
(σ−r)(σ+r)

r2
− 1

3
(σ−σ+)

)
, (26)

where α = e2 is the fine structure constant. Typical values
of the electron momentum and co-ordinate in positronium
are p ∼ mα, r ∼ 1/(mα) [12]. Thus, we can estimate VT

to be

VT ∼ µT
α

m4

p2

r3
∼ µTmα

6 (27)

and
∆E ∼ Vs ∼ α

m2

p

r2
∼ mα4. (28)

As a result, for the C- and T -odd impurity of the 3P1 state
to the 1P1 state we have

ηT ∼ VT

∆E
∼ µTα

2. (29)

For the branching ratio we get

R(1P1 →3 S1 + γ)
R(1P1 →3 S1 + 2γ)

∼ ηT

α
∼ µTα. (30)

We take into account here that the probability of the de-
cay to 3S1 +2γ is reduced by an additional factor α com-
pared to the decay to 3S1 + γ [12]. The measurement of
the branching ratio (30) with the accuracy 10−2 gives the
constraint for the electron of µT ∼ 1, but it is far beyond
the experimental possibilities of positronium physics by
now. Let us consider a charmonium system, cc̄, which is
similar to positronium. One gluon exchange produces the
Coulomb-like potential with a running constant approx-
imately equal to αs = 0.4 [16] (applicable also for the
tensor interaction). Charmonium energy levels can be de-
scribed by this potential and a confinement potential of
oscillator type. The latter is essential for large excitations
and will not be taken into account in our estimations. Re-
peating our estimations for the present case we find

VT ∼ µT
α

m4
c

p2

r3
∼ µTmcαα

5
s ,

∆E ∼ αs

m2
c

p

r2
∼ mcα

4
s ,

ηT ∼ VT

∆E
∼ µTααs, (31)

where mc is the mass of a charmed quark. For the branch-
ing ratio of the cc̄ system we find

R(1P1 → J/ψ + γ)
R(1P1 → J/ψ + 2γ)

∼ ηT

α
∼ µTαs. (32)

The 3P1 state of charmonium has experimentally been
identified and is called χc1(1P )(3510) [17]. The 1P1 state
has not been clearly identified by now. A possible candi-
date would be hc(1P )(3526), but this needs confirmation
[17].

Neutral kaon system

It is natural to assume that CP -violation is due to the
Standard Model weak interaction; however, another ori-
gin cannot be excluded by now. It is difficult to do some
estimates for T -odd magnetism for this case because of
competition of an enhancement factor such as the small
mass difference mKL −mKS and suppression factors such
as the off-mass-shell character and spin dependence of the
T -odd P -even vertex. One needs to calculate radiation
corrections to the K0–K̄0 mixing with the T -odd electro-
magnetic vertex (Fig. 5). A direct CP -violation can be es-
timated by the evaluation of radiation corrections similar
to “penguin” [16] diagrams.

5 Conclusion

Thus, we have shown that besides the P - and T -odd elec-
tric dipole moment the particle can have a T -violating
P -conserving magnetic moment. We have considered the
contribution of the T -odd magnetism to the P -odd T -even
neutron–nucleus forward elastic scattering amplitude. We
find that the relative T -violation being of the order of
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Fig. 5. Diagram of T -odd radiation correction to the K0–K̄0

mixing. A black circle denotes the T -odd P -even vertex

unity corresponds to the T -odd P -even cross section
(Fig. 3) being about 10−2–10−3 mbarn in the energy region
of 50MeV–3GeV. The measurements for 12MeV neutrons
and a 165Ho target give the constraint of 10−2 mb on the
five-fold correlation cross section [7]. If we relate this con-
straint to our energy range we find that µT ≤ 1.

It seems that neutron EDM gives the constraint µT ≤
0.1.

Electrons and constituent quarks in principle can pos-
sess T -violating P -conserving moments too. The way to
search these may be the observation of forbidden decay
modes of positronium-like systems from the 3P1 and 1P1
states.
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